Tuesday, September 1, 2015

Page 325

Problem 41

Problem. Find the derivative of $f(x)=\ln 3 x$.
Solution. Use the rule for \ln and the Chain Rule for $3 x$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{3 x} \cdot 3 \\
& =\frac{3}{3 x} \\
& =\frac{1}{x} .
\end{aligned}
$$

An alternative is to note that $f(x)=\ln 3+\ln x$ and note that $\ln 3$ is a constant. Therefore,

$$
f^{\prime}(x)=\frac{1}{x} .
$$

Problem 43

Problem. Find the derivative of $g(x)=\ln x^{2}$.
Solution. Use the rule for \ln and the Chain Rule for x^{2}.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{1}{x^{2}} \cdot 2 x \\
& =\frac{2 x}{x^{2}} \\
& =\frac{2}{x}
\end{aligned}
$$

An alternative is to note that $g(x)=2 \ln x$. Therefore,

$$
g^{\prime}(x)=\frac{2}{x}
$$

Problem 45

Problem. Find the derivative of $y=(\ln x)^{4}$.
Solution. Use the Chain Rule.

$$
\begin{aligned}
y^{\prime} & =4(\ln x)^{3} \cdot \frac{1}{x} \\
& =\frac{4(\ln x)^{3}}{x}
\end{aligned}
$$

Problem 49

Problem. Find the derivative of $y=\ln \left(x \sqrt{x^{2}-1}\right)$.
Solution. Let's use the quicker method and rewrite this as $y=\ln x+\frac{1}{2} \ln \left(x^{2}-1\right)$. Then

$$
\begin{aligned}
y^{\prime} & =\frac{1}{x}+\frac{1}{2} \cdot \frac{2 x}{x^{2}-1} \\
& =\frac{1}{x}+\frac{x}{x^{2}-1} .
\end{aligned}
$$

Problem 51

Problem. Find the derivative of $f(x)=\ln \left(\frac{x}{x^{2}+1}\right)$.
Solution. Rewrite this as $f(x)=\ln x-\ln \left(x^{2}+1\right)$. Then

$$
f^{\prime}(x)=\frac{1}{x}-\frac{2 x}{x^{2}+1} .
$$

It is ok to leave the answer in that form. Or we could combine the two rational functions. Sometimes that pays off.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x}-\frac{2 x}{x^{2}+1} \\
& =\frac{x^{2}+1}{x\left(x^{2}+1\right)}-\frac{2 x^{2}}{x\left(x^{2}+1\right)} \\
& =\frac{x^{2}+1-2 x^{2}}{x\left(x^{2}+1\right)} \\
& =\frac{-x^{2}+1}{x\left(x^{2}+1\right)} .
\end{aligned}
$$

Meh.

Problem 61

Problem. Find the derivative of $y=\ln |\sin x|$.
Solution. We know that the derivative of $\ln |x|$ is $\frac{1}{x}$ with domain $\{x \mid x \neq 0\}$. Use that rule and the Chain Rule.

$$
\begin{aligned}
y^{\prime} & =\frac{\cos x}{\sin x} \\
& =\cot x .
\end{aligned}
$$

Problem 63

Problem. Find the derivative of $y=\ln \left|\frac{\cos x}{\cos x-1}\right|$.
Solution. We can simplify this to $y=\ln |\cos x|-\ln |\cos x-1|$. Then

$$
\begin{aligned}
y^{\prime} & =\frac{-\sin x}{\cos x}-\frac{-\sin x}{\cos x-1} \\
& =-\tan x+\frac{\sin x}{\cos x-1} .
\end{aligned}
$$

Problem 89

Problem. Use logarithmic differentiation to differentiate $y=x \sqrt{x^{2}+1}$.
Solution. Apply logarithms to both sides to get

$$
\begin{aligned}
\ln y & =\ln x \sqrt{x^{2}+1} \\
& =\ln x+\frac{1}{2} \ln \left(x^{2}+1\right)
\end{aligned}
$$

Then differentiate.

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\frac{1}{x}+\frac{1}{2} \cdot \frac{2 x}{x^{2}+1} \\
& =\frac{1}{x}+\frac{x}{x^{2}+1} .
\end{aligned}
$$

Then multiply by y to get y^{\prime}.

$$
\begin{aligned}
y^{\prime} & =y\left(\frac{1}{x}+\frac{x}{x^{2}+1}\right) \\
& =x \sqrt{x^{2}+1}\left(\frac{1}{x}+\frac{x}{x^{2}+1}\right) \\
& =\sqrt{x^{2}+1}+\frac{x^{2}}{\sqrt{x^{2}+1}} .
\end{aligned}
$$

Problem 91

Problem. Use logarithmic differentiation to differentiate $y=\frac{x^{2} \sqrt{3 x-2}}{(x+1)^{2}}$.

Solution. Apply logarithms to both sides to get

$$
\begin{aligned}
\ln y & =\ln \left(\frac{x^{2} \sqrt{3 x-2}}{(x+1)^{2}}\right) \\
& =2 \ln x+\frac{1}{2} \ln (3 x-2)-2 \ln (x+1) .
\end{aligned}
$$

Then differentiate.

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\frac{2}{x}+\frac{1}{2} \cdot \frac{3}{3 x-2}-\frac{2}{x+1} \\
& =\frac{2}{x}+\frac{3}{2(3 x-2)}-\frac{2}{x+1} .
\end{aligned}
$$

Then multiply by y to get y^{\prime}.

$$
\begin{aligned}
y^{\prime} & =y\left(\frac{2}{x}+\frac{3}{2(3 x-2)}-\frac{2}{x+1}\right) \\
& =\frac{x^{2} \sqrt{3 x-2}}{(x+1)^{2}} \cdot\left(\frac{2}{x}+\frac{3}{2(3 x-2)}-\frac{2}{x+1}\right) .
\end{aligned}
$$

That can be simplified, but it is not necessary and probably not worth it.

Problem 93

Problem. Use logarithmic differentiation to differentiate $y=\frac{x(x-1)^{3 / 2}}{\sqrt{x+1}}$.
Solution. Apply logarithms to both sides to get

$$
\begin{aligned}
\ln y & =\ln \left(\frac{x(x-1)^{3 / 2}}{\sqrt{x+1}}\right) \\
& =\ln x+\frac{3}{2} \ln (x-1)-\frac{1}{2} \ln (x+1) .
\end{aligned}
$$

Then differentiate.

$$
\frac{y^{\prime}}{y}=\frac{1}{x}+\frac{3}{2(x-1)}-\frac{1}{2(x+1)} .
$$

Then multiply by y to get y^{\prime}.

$$
\begin{aligned}
y^{\prime} & =y\left(\frac{1}{x}+\frac{3}{2(x-1)}-\frac{1}{2(x+1)}\right) \\
& =\frac{x(x-1)^{3 / 2}}{\sqrt{x+1}} \cdot\left(\frac{1}{x}+\frac{3}{2(x-1)}-\frac{1}{2(x+1)}\right) .
\end{aligned}
$$

Problem 103

Problem. The term t of a $\$ 200,000$ home mortgage as 7.5% interest can be approximated by

$$
t=13.375 \ln \left(\frac{x}{x-1250}\right)
$$

where x is the monthly payment. [I will do part (d).] Find the instantaneous rates of change of t with respect to x when $x=1398.43$ and $x=1611.19$.

Solution. First, rewrite t as

$$
t=13.375(\ln x-\ln (x-1250))
$$

and then find the derivative.

$$
\frac{d t}{d x}=13.375\left(\frac{1}{x}-\frac{1}{x-1250}\right)
$$

Evaluate at $x=1398.43$ and at $x=1611.19$.

$$
\begin{aligned}
\frac{d t}{d x}(1398.43) & =13.375\left(\frac{1}{1398.43}-\frac{1}{148.43}\right) \\
& =-0.0805 \\
\frac{d t}{d x}(1611.19) & =13.375\left(\frac{1}{1611.19}-\frac{1}{361.19}\right) \\
& =-0.0287
\end{aligned}
$$

Problem 107

Problem. A person walking along a dock drags a boat by a 10 -meter rope. The boat travels along a path known as a tractrix. The equation of this path is

$$
y=10 \ln \left(\frac{10+\sqrt{100-x^{2}}}{x}\right)-\sqrt{100-x^{2}} .
$$

[I will do parts (b) and (c).] Find the slopes of this path when $x=5$ and $x=9$. What does the slope of the path approach as $x \rightarrow 10$?

Solution. Rewrite the function as

$$
y=10\left(\ln \left(10+\sqrt{100-x^{2}}\right)-\ln x\right)-\sqrt{100-x^{2}}
$$

and differentiate.

$$
\begin{aligned}
y^{\prime} & =10\left(\frac{\frac{d}{d x}\left(10+\sqrt{100-x^{2}}\right)}{10+\sqrt{100-x^{2}}}-\frac{1}{x}\right)+\frac{x}{\sqrt{100-x^{2}}} \\
& =10\left(\frac{-\frac{x}{\sqrt{100 x^{2}}}}{10+\sqrt{100-x^{2}}}-\frac{1}{x}\right)+\frac{x}{\sqrt{100-x^{2}}} \\
& =10\left(-\frac{x}{\sqrt{100-x^{2}}\left(10+\sqrt{100-x^{2}}\right)}-\frac{1}{x}\right)+\frac{x}{\sqrt{100-x^{2}}} .
\end{aligned}
$$

It will pay to simplify this. Get a common denominator of

$$
x \sqrt{100-x^{2}}\left(10+\sqrt{100-x^{2}}\right) .
$$

Gather the terms in the numerator and discover that the fraction reduces to

$$
y^{\prime}=-\frac{\sqrt{100-x^{2}}}{x}
$$

Evaluate at $x=5$ and $x=9$.

$$
\begin{aligned}
& y^{\prime}(5)=-\frac{\sqrt{75}}{5}=-\sqrt{3} \\
& y^{\prime}(9)=-\frac{\sqrt{19}}{9}
\end{aligned}
$$

Now it is easy to take the limit as $x \rightarrow 10$.

$$
\lim _{x \rightarrow 10^{+}}\left(-\frac{\sqrt{100-x^{2}}}{x}\right)=0 .
$$

